Identificación de usuariosPortal de Empleo I+D+i
 COMPARTIR OFERTA
Facebook  Twitter  LinkedIn 
Imprimir en blanco y negro

Ofertas de empleo


AVISO: Esta oferta no se encuentra activa.

Oferta de Trabajo  Código: 41954  

Puesto: Post-doctoral research associate

Función: Post-doctoral research associate in Development of 3D In Vitro Models of Airway Tissues for COVID-19 Research
Empresa: FUNDACIÓN IMDEA MATERIALES  
Referencia: MAMAP-CM_JP_PD01 Publicada el 24/11/2021 Publicada hasta el 31/01/2022
Tipo de Contrato: Proyectos de I+D REACT-UE Investigación Madrid Dedicación: Jornada completa  
Localidad: GETAFE Provincia: Madrid Disponibilidad para viajar: Sin especificar
Fecha de Incorporación: January 2022  
Enlace URL: jobs.materials.imdea.org/offer/187

Nivel Académico
Doctor  

Titulación Académica
Ingeniería Industrial (Titulación Universitaria)
Química (Titulación Universitaria)
Ingeniería de Materiales (Titulación Universitaria)
Biotecnología (Titulación Universitaria)
Ciencias Biomédicas (Titulación Universitaria)

Áreas tecnológicas
A- Biociencias
A-032 Bioingeniería
P- Arquitectura, Ingeniería y Producción
T- Química

Idiomas
Idioma: Inglés Nivel Lectura: Alto Nivel Escrito: Alto Nivel Conversación: Alto

Experiencia
The candidate should have substantial experience from their doctoral research in at least one of the following areas: microfluidic device design and fabrication, materials characterization (electron microscopy, rheology, mechanical testing), cell culture (with preference for experience with epithelial cell culture or 3D cell culture), or data-driven computational modeling or machine learning algorithms.

The selected candidate will work on areas of the project that are compatible with their expertise, so it is not necessary to have experience in all aspects of the project but it is necessary to have depth of experience in at least one of the mentioned areas.

Otros

IMDEA Materials Institute is seeking a postdoctoral fellow to work on a fast-paced project on the development of organ-on-chip devices mimicking airway tissues as a model system for studying COVID-19 and other respiratory diseases using a combination of experimental and computational approaches

  • Description:

Project Background: The current global pandemic (COVID-19) and other recent major epidemics including SARS and MERS as well as the historical Spanish flu are caused by respiratory viruses that affect the lung. To better understand the pathophysiology of these diseases and develop preventive and/or therapeutic measures, translational models play a key role in the pathway towards clinical trials. On the one hand, animal models are a standard method prior to human clinical trials, but these suffer from ethical concerns as well as physiological differences. On the other hand, 2D and even 3D cell cultures, such as organoids, are easier to work with and significantly cheaper, but they often fail to recapitulate the complexity of the in vivo situation. Within the last decade research into microphysiological systems, often called organ-on-chip devices or in vitro tissue models, has blossomed, including the development of lung-on-chip systems that mimic the epithelium-endothelium interface and physiological breathing movements. These devices are typically integrated into bioreactors and further combined into high-throughput screening platforms involving data collection and analysis. Materials science plays a key role in the development of such 3D in vitro tissue models through the synthesis of biocompatible materials for use in the devices and their processing to create complex 3D geometries. This project addresses the development of 3D in vitro models of airway tissues with varying levels of complexity to enable them to be used in understanding and treating not only COVID-19 and its variants in the short term but potentially any respiratory disease in the long term.

Project Tasks: The candidate will carry out a one-year research project, working within a small team of researchers dedicated to this topic. The candidate will work on one or more of the following areas: (1) the combination of hydrogel materials with co-culture of relevant cells to mimic the airway epithelium, (2) the development of 3D devices, fabricated using rapid prototyping technologies such as stereolithography, (3) the integration of these devices into bioreactors to enable dynamic culturing, (4) 4D characterization and data analysis, and/or (5) development of data-driven computational methods using machine learning techniques to optimize device designs. The candidate will learn new interdisciplinary computational and/or experimental skills and will have access to state of the art equipment at IMDEA Materials Institute.

Project Team: The research assistant will be integrated in a small team of 3 research associates/assistants dedicated to this project, which is supervised by Dr. Jennifer Patterson (Biomaterials and Regenerative Medicine Group) and is a collaboration with Dr. Maciej Haranczyk (Computational and Data-Driven Materials Discovery group) and Dr. Jon Molina (Micromechanics and Nanomechanics group). With the support of the María de Maeztu Unit of Excellence by the Spanish Ministry of Science and Innovation, the Institute has recently established new lab facilities for biomaterials research and cell culture experiments, which will be used for this project.

  • Requirements:

    The candidate should have a Ph.D. in Materials Science/Materials Engineering, Biomedical Engineering, Mechanical Engineering, Chemistry, Biomedical Sciences, or a related field, with strong academic credentials.

    A high level of English (both oral and written) is mandatory. No knowledge of Spanish is required, although free lessons in both English and Spanish are provided.

    The candidate should have substantial experience from their doctoral research in at least one of the following areas: microfluidic device design and fabrication, materials characterization (electron microscopy, rheology, mechanical testing), cell culture (with preference for experience with epithelial cell culture or 3D cell culture), or data-driven computational modeling or machine learning algorithms.

    The selected candidate will work on areas of the project that are compatible with their expertise, so it is not necessary to have experience in all aspects of the project but it is necessary to have depth of experience in at least one of the mentioned areas.

    Interested candidates should submit their Curriculum Vitae (CV) along with a cover letter describing their research interests and relevant experience (2 pages maximum), complete contact details for 2 reference letter writers, and academic records.

  • Conditions:

Screening of candidates will begin immediately, and promising candidates will be invited for an initial interview via Zoom, even before the closing date. The vacancy will remain listed until at least December 8, 2021, or until filled. Therefore, interested candidates are encouraged to apply as soon as possible to ensure best consideration of their application.

The expected start date is January 1, 2022 (dependent on availability).

The position includes a full-time contract with social security coverage.

Candidates must submit their materials through the IMDEA jobs portal for full consideration.

This contract will be co-financed by the Community of Madrid and the European Union through the European Regional Development Fund Operational Programme (ERDF 2014-2020), funded as part of the Union's response to the COVID-19 pandemic.